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Nonlinear Inviscid Aerodynamic Effects on Transonic
Divergence, Flutter, and Limit-Cycle Oscillations

Jeffrey P. Thomas,¤ Earl H. Dowell,† and Kenneth C. Hall‡

Duke University, Durham, North Carolina 27708–0300

By the use of a state-of-the-art computational � uid dynamic (CFD) method to model nonlinear steady and
unsteady transonic � ows in conjunction with a linear structural model, an investigationis made into how nonlinear
aerodynamics can effect the divergence, � utter, and limit-cycle oscillation (LCO) characteristics of a transonic
airfoil con� guration. A single-degree-of-freedom (DOF) model is studied for divergence, and one- and two-DOF
models are studied for � utter and LCO. A harmonicbalance method in conjunction with the CFD solver is used to
determine the aerodynamics for � nite amplitude unsteady excitations of a prescribed frequency. A procedure for
determining the LCO solution is also presented. For the con� guration investigated, nonlinear aerodynamic effects
are found to produce a favorable transonic divergence trend and unstable and stable LCO solutions, respectively,
for the one- and two-DOF � utter models.

Nomenclature
a = nondimensional location of airfoil elastic axis, e=b
b, c = semichord and chord, respectively
cl , cm = coef� cients of lift and moment about

elastic axis, respectively
e = location of airfoil elastic axis, measured positive

aft of airfoil midchord
h, ® = airfoil plunge and pitch degrees of freedom
I® = second moment of inertia of airfoil about elastic axis
j =

p
¡1

Kh = airfoil plunge stiffness
K® = airfoil torsional stiffness about elastic axis
M1 = freestream Mach number
m = airfoil sectional mass
N = number of degrees of freedom of computational � uid

dynamics model
NH = number of harmonics
q1 = freestream dynamic pressure
r® = radius of gyration of airfoil about elastic axis,

r 2
® D I®=mb2

S® = � rst moment of inertia of airfoil about elastic axis
T = period
t = time
U1 = freestream velocity
V = reduced velocity, U1=!® c
x® = airfoil static unbalance, S®=mb
®0 = airfoil steady (mean) � ow angle of attack
¹ = mass ratio, m=¼½1b2

½1 = freestream density
!, N! = frequency and reduced frequency based on airfoil

chord, N! D !c=U1
!h , !® = uncoupled natural frequency of plunging and pitching

about elastic axis, respectively
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Subscript

f = linear neutral stability (� utter) condition

Introduction

L IMIT-CYCLE OSCILLATIONS (LCO) in aeroelasticsystems
appear to be more prevalent in transonic � ow than in subsonic

� ow. Hence, it hasbeenthoughtthat, at leastforsomecon� gurations,
the sourceof thenonlinearitythat leads to LCO is in theaerodynamic
� ow. Of course, nonlinear structural mechanisms can also lead to
LCO whether the � ow is transonic or not. There have been wind-
tunnel experiments where the test model was designed to exhibit
LCO due to a structural nonlinearity, and such test results have
been successfully correlated with analysis.1;2 However, the present
understanding of LCO induced by aerodynamic nonlinearities is
less complete, and, as yet, no systematic quantitative correlation
between theory and experiment has been achieved.

This is perhaps a meaningful measure of the greater dif� culty in
modeling aerodynamicnonlinearities,both theoreticallyand exper-
imentally, compared to modeling nonlinearities in a structure.

One of the advantagesof studying theoreticalmodels is that each
of the several possible physical phenomena that may lead to LCO
can be studied separately. In this paper, we consider the effects of
nonlinearities arising from inviscid transonic aerodynamics. The
principal physical effect of interest is the relatively large motion of
the shockwave as the amplitudeof thepitchmotionof the airfoil, for
example, becomes suf� ciently large. This in turn leads to a move-
ment of the center of pressure with amplitude. Hence, one expects
to see an effect of amplitude on the neutrally stable motions that
may occur. Moreover, this may lead to limit-cycle motions rather
than the catastrophic exponentially growing oscillations predicted
by time linearized aerodynamic models. The latter models capture
the effect of the mean position of the shock and small shock mo-
tions about this mean position by assuming that the shock motion is
dynamically linear, that is, the shock motion is proportional to the
airfoil motion. This is not true for dynamically nonlinear aerody-
namic models that allow for larger and more general shock motions,
includingthe possibleappearanceand disappearanceof a shockdur-
ing a cycle of airfoil motion. The latter is our concern here.

Technical Discussion
In this paper, we consider two distinct aeroelastic phenomena,

divergence and � utter, and their associated LCO. To keep the dis-
cussion focused on the fundamental physical phenomena, and to
ease the interpretation of the inherently complex phenomena, only
a single structural degree of freedom will be studied for the di-
vergence case. However, one- and two-degree-of-freedomsystems
are presented for the case of � utter. The aerodynamic model is a
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state-of-the-artcomputational � uid dynamics (CFD) method based
on the Euler equationsof nonlinear, rotational inviscid aerodynamic
theory.

Here we emphasize that the solution technique is for a large sys-
tem of ordinary differential equations in time, which represents the
time variationof the � uid unknownsat each spatial grid point in the
CFD model. The unknowns are four in number at each grid point
for a two-dimensional Euler � ow, including density, the two scalar
components of momentum, and the total energy at each grid point.
The present CFD model has about 17,000 total � ow variable un-
knowns, and, therefore, an ef� cient solution method is imperative
to carryout the studies reportedhere. Furthermore,we acknowledge
the limitations of the inviscid approximation in modeling realistic
physical � ows. Shock-induced boundary-layer separation, for in-
stance, which requires the implementationof a viscous � ow model,
may have a signi� cant effect on unsteadyaerodynamicloading.Re-
search efforts are currently underway to address this issue.

Harmonic Balance Solution in the Frequency Domain
The pioneering work of Ueda and Dowell3 and Greco et al.4

should be recalled. Ueda and Dowell3 used a describing function
technique whereby the dominant harmonic was extracted from a
time marching CFD model, LTRAN2, using both indicial and har-
monic motions of the airfoil. They considered a two-degree-of-
freedom typical airfoil section. Greco et al.4 used the method of
harmonic balance to study the unsteady transonicaerodynamics for
� utter and LCO prediction. In their work, they used the transonic
small disturbance potential � ow model, as did Ueda and Dowell,3

and only considered a single harmonic. In the present work, we
employ the Euler equations of � uid dynamics and also retain mul-
tiple harmonics in the aerodynamic model. It is found that using
several harmonics improves the theoretical prediction of the aero-
dynamic forces. However, in the aeroelasticanalysis,when the � uid
and structural models are coupled, only a single harmonic is used
for the structural model. Earlier studies of structural nonlinearities
support this approximation.2 The effects of higher harmonics in the
aerodynamicmodel on this single harmonic in the structural model
are retained because they are found to be signi� cant in the � uid
model.

Aeroelastic System and Its Solution
The structural motion is representedby a one- or two-degree-of-

freedom model in pitch and /or plunge (see Fig. 1 for a depiction of
the airfoil and the CFD grid used in the numerical calculations). By
carefully selecting the pitch axis and mass ratio, we can ensure that
the systemwill undergoeitherclassical linear aeroelasticdivergence
or � utter. Divergence can occur when the aerodynamic negative
stiffness overcomes the structural stiffness, and � utter may occur
when the aerodynamic negative damping overcomes the structural
damping. As will be shown, each of these classical linear aeroelas-
tic phenomena has a distinctivelydifferent limit-cycle or nonlinear
behavior.

The Mach number for these studies is M1 D 0:8 and a NACA
64A010Aairfoil is considered.The NACA 64A010Ais a symmetric
(10.6% thickness ratio) variant of the “Ames” AGARD 156 (see
Ref. 5) benchmark section. An O-type computational mesh with
65 £ 65 radial and circumferentialnodes that has an outer boundary
radius of 10 chord lengths is used for the CFD calculations. The
computed static pressure distribution for an angle of attack of 0.0
and 5.0 deg is shown in Fig. 2. Note that at 5.0 deg, the upper surface
shock wave has moved rearward and increased in strength, and, on
the lower surface, the shock has essentiallydisappeared.The center
of pressurexc:p: as a functionof static angleof attack is shown Fig. 3,
where it is seen that the center of pressure moves from 32% chord
to 40% chord as the angle of attack varies from 0.0 to 5.0 deg.

Linear and Nonlinear Divergence
This is perhaps the simpler of the two phenomena because, by

de� nition, it is time independent,that is, we are dealingwith a static
linear instabilityand its nonlinearcounterpart.In this case, the single
structural equation of motion in pitch about the midchord becomes

Close-up

Overall

Fig. 1 NACA 64A010A computational grid.

Fig. 2 Steady � ow surface pressure distributions:NACA 64A010Aair-
foil section, M 1 = 0.8.

an equation of static equilibrium. For the aerodynamic model, we
only need to determine the lift and moment about some appropriate
axis as a function of angle of attack. For small angle of attack, we
will recover the classical linear aeroelastic divergence phenomena.
However, the question is, what are the effects of the nonlinearity?

The equation of static equilibrium simply equates the aerody-
namic and elastic restoring moments. Namely,

K®® D q1c2cm .®/ (1)
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Fig. 3 Center of pressure variation with angle of attack: NACA
64A010A airfoil section, M 1 = 0.8.

When a nondimensionaldynamic pressure ¸ is de� ned, Eq. (1) may
be rewritten as

¸ D ®=cm.®/ (2)
where ¸ is given by ¸ D q1c2=K® . The angle of attack may have an
initial angle ®0 , which is prescribed, and also an additional angle
due to the torsional twist of the elastic spring ®.

Now, for a linear aeroelastic model, the aerodynamic moment
coef� cient is simply proportional to the angle of attack. Thus, for
no initial angle of attack, the classical linear divergence dynamic
pressure is given by Eq. (2), where ¸ is now a � xed number.

To extend this study of divergence into the nonlinear range, we
recognize that now the aerodynamiccoef� cient is a nonlinear func-
tion of angle of attack. For zero initial angle of attack, we may
determine the twist of the torsional spring, and its dependence on
¸, by specifying the twist angle in Eq. (2) and then solving for ¸.
This procedure is readily extended to the case with an initial angle
of attack.

Qualitatively one can anticipate the effect of the aerodynamic
nonlinearity by examining the aerodynamicmoment variation with
angleof attack.A necessaryconditionfor divergenceto occur is that
the aerodynamic moment be positive in the same direction as the
twist angle. Moreover, if the nonlinear aerodynamicmodel predicts
a moment less in magnitude than that predicted by linear aerody-
namic theory, the effect of the nonlinearity will be to stabilize the
divergenceand vice versa if thenonlineartheorypredictsan increase
in aerodynamicmoment over that given by linear theory. Hence, by
examining the slope of the moment vs angle-of-attack curve with
increasing angle of attack, we will know whether the effect of the
nonlinearity is favorable or unfavorable.

In the followingexample, the effect is favorable.That is, once the
divergencedynamic pressure for a small angle of attack is exceeded
(this is the classicallinear aeroelasticdivergencedynamicpressure),
then the angleof twist of the pitchspringremains� nite andsmoothly
increases from zero beyond the divergence dynamic pressure (see
Fig. 4, where the angle of twist is plotted vs the nondimensional
dynamic pressure). Also shown are results with an initial angle of
attack. In this latter case, there is some twist over the full range of
dynamic pressure. Indeed, even if the initial angle of attack is only
a few degrees, it would be dif� cult to detect the classicaldivergence
dynamic pressureexperimentallyfor this example. For readers who
have studied buckling of systems in the presence of imperfections
(e.g. beams, plates, or shells with initial curvature), this behavior
will be familiar.

In this example, recall that the center of pressure moves from
32% chord at low angles of attack to 40% chord at 5.0-deg angle
of attack. This is the principal reason for the stabilizing effect of
nonlinear aerodynamics on the postdivergencecondition.

Had the change of the slope of the aerodynamic moment curve
been in the opposite direction, then the angle of twist vs dynamic
pressure curve would have bent the other way. That is, for dynamic
pressures below the classical divergence dynamic pressure, there
would be nontrivial (nonzero) twist angles that represent possible
static nonlinear equilibrium solutions. Intuitively, one recognizes

Fig. 4 Divergence and postdivergence of an airfoil, including tran-
sonic nonlinear inviscid aerodynamics: NACA 64A010A airfoil section,
M 1 = 0.8 and a = 0.0.

that these latter solutions would themselves be unstable, that is,
such results would be interpretedphysicallyas the magnitudeof the
disturbance required to generate nontrivial twist at dynamic pres-
sures below the classical divergencedynamic pressure. In our stud-
ies to date, only the stable nonlinear effect has been observed for
statically divergent systems. However, this is not to say that unsta-
ble nonlinear divergence systems may not be encounteredfor some
other parameter combinations.

Of course,divergenceis a very special case of nonlinearaeroelas-
ticity as it is for linear aeroelasticitybecause the frequencyof oscil-
lation is zero when divergenceand postdivergenceoccurs.Thus, we
now turn to an oscillatory case. First we consider the nonlinear un-
steady aerodynamic model and its solution via a harmonic balance
method.

Harmonic Balance Methodology
First consider the development of the harmonic balance for-

mulation for the case of three-dimensional � ows with moving
boundaries. For generality, we present the development in three
dimensions, which can be written in a more compact form than for
two-dimensions. This methodology has been recently devised by
Hall et al.6 and has been used to model nonlinear unsteady periodic
� ows in cascade compressors. McMullen et al.7 have also recently
investigated using a variation technique as a method to accelerate
convergence to a periodic steady state in turbomachinery � ows.

Governing Equations
We consider the inviscid Euler equations (the Navier–Stokes

equationscan be treated in a similar manner), which may be written
in integral form as

@

@t

Z Z Z

V .t/

U dV C
Z Z

A.t /

. EFF ¡ UEPx/ ¢ On dA D 0 (3)

where U is the vector of conservative � uid variables

U D f½ ½u ½v ½w Et gT (4)
EFF D FOi C G Oj C H Ok (5)

where F, G, and H are the x , y, and z direction component � ux
vectors, that is,

F D

8
>>>><

>>>>:

½u

½u2 C p

½uv

½uw

.E t C p/u

9
>>>>=

>>>>;

; G D

8
>>>><

>>>>:

½v

½uv

½v2 C p

½vw

.E t C p/v

9
>>>>=

>>>>;

H D

8
>>>><

>>>>:

½w

½uw

½uv

½v2 C p

.E t C p/w

9
>>>>=

>>>>;
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The unsteady motion of the control volume EPx is given by
EPx D f Oi C g Oj C h Ok (6)

and this accounts for the effect of airfoil motion.

Fourier Series Expansion
We consider the unsteadinessof the � ow to be strictly periodic in

time with period T D 2¼=!, where ! is the fundamental unsteady
frequency.As such, we may expand Eq. (3) in a Fourier series. For
instance, Z Z Z

V .t/

U dV D Q.t/ ¼
NHX

n D ¡NH

OQne jn!t (7)

so that
@

@ t

Z Z Z

V .t /

U dV ¼ j!
NHX

n D ¡NH

n OQne j n!t (8)

and, similarly,Z Z

A.t/

. EFF ¡ UEPx/ ¢ On dA D R.t/ ¼
NHX

n D ¡NH

ORne j n!t (9)

NH is the number of harmonics used in the Fourier expansion.

Fourier Coef� cients
Substitutingthe Fourier expansions[Eqs. (8) and (9)] into Eq. (3),

multiplying by e¡ jm!t , and integrating over one period, that is,Z T

0

1
T

NHX

n D ¡NH

. jn OQn C ORn/e jn!t e¡ jm!t dt (10)

yields a system of equations for the Fourier coef� cients. Namely,
A OQ C OR D 0 (11)

where

A D

2

4
¡ j NH

: : :

j NH

3

5

OQ D

8
>>>><

>>>>:

OQ¡NH

OQ¡NH C 1

:::

OQNH

9
>>>>=

>>>>;

; OR D

8
>>>><

>>>>:

OR¡NH

OR¡NH C 1

:::

ORNH

9
>>>>=

>>>>;

Time-Domain Variables
Via a Fourier transform matrix E, one can relate the Fourier co-

ef� cient variables to solution variables at discrete subtime levels
within a given period of motion, that is,

OQ D E QQ; OR D E QR (12)
where

QQ D

8
>>>><

>>>>:

Q.t0/

Q.t1/
:::

Q
¡
t2NH

¢

9
>>>>=

>>>>;

; QR D

8
>>>><

>>>>:

R.t0/

R.t1/
:::

R
¡
t2NH

¢

9
>>>>=

>>>>;

(13)

tn D 2¼n

.2NH C 1/!
; n D 0; 1; : : : ; 2NH (14)

More speci� cally,

QQ D

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Z Z Z

V .t0 /

U.t0/ dV

Z Z Z

V .t1 /

U.t1/ dV

:::Z Z Z

V .t2NH /

U
¡
t2NH

¢
dV

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(15)

QR D

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Z Z

A.t0 /

[ EFF .t0/ ¡ U.t0/EPx.t0/] ¢ On.t0/ dA

Z Z

A.t1 /

[ EFF .t1/ ¡ U.t1/EPx.t1/] ¢ On.t1/ dA

:::Z Z

A.t2NH /

£ EFF
¡
t2NH

¢
¡ U

¡
t2NH

¢
EPx
¡
t2NH

¢¤
¢ On

¡
t2NH

¢
dA

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

(16)

Thus,

AE QQ C E QR D 0 (17)

E¡1AE QQ C E¡1E QR D 0 (18)

Now one can work in terms of the time domain variables, which is,
in general,much easier to do. The resultingsystem of equations can
be written as

D QQ C QR D 0 (19)

where

D D E¡1AE (20)

Pseudotime Marching
By adding a pseudotime derivative term ± QQ=±t to Eq. (19), one

can develop an iterative technique for determining the solution QQ.
Namely,

± QQ
±t

C D QQ C QR D 0 (21)

Thus, for example, in the case of a � nite volumebased CFD method,
Eq. (21) would be solved for every computational � nite volume
comprising the computational mesh. The overall method would,
thus, consist of pseudotime marching N £ .2NH C 1/ dependent
variables, where N is the number of mesh points times the number
of dependent variables. Note that modifying an existing CFD � ow
solver to implement the harmonic balance technique is a relatively
straightforwardtask becausethe main requirementis just a redimen-
sioning of the primary arrays from N elements to N £ .2NH C 1/
elements.The restof the � owsolvercan remainrelativelyunchanged
because the unsteadiness is due primarily to the source term D QQ.

Flutter and Associated LCO
Now consider single-degree-of-freedom � utter in pitch. Here, the

classical � utter arises from a negative damping in the aerodynamic
moment beyond a certain reduced frequency.However, the reduced
frequency at which the aerodynamic damping moment becomes
negative increasesas the angle of pitch oscillationincreases.Hence,
the reducedvelocitydecreasesas the angle of pitch increases,which
suggests that this will lead to an unstable LCO, as indeed it does.

In the exampleconsidered,we havemoved the elasticaxis to 20%
chord to preclude divergence and to induce � utter.

Note that in the present analysis, we are using a single harmonic
to represent the pitch oscillation. However, in the calculation of
the aerodynamic moment, we have included up to three harmonics
to determine the effect of higher harmonics on the � rst harmonic
of the aerodynamic moment. It turns out that the effect of the third
harmonic is negligible. Indeed, if one only retainsa singleharmonic
in the aerodynamicanalysis, the resultsare qualitativelycorrectand
have fair quantitative accuracy.

Results for the � rst harmonic for the lift and moment about the
pitch or elastic axis are shown in Fig. 5. These results are for two
harmonicsretainedin the aerodynamicanalysis.Note that the results
at a reduced frequency of zero were those used in the divergence
analysis discussed earlier. Of course, a transformation of the pitch
axis is used for the divergence analysis.
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Real unsteady lift Imaginary unsteady lift

Real unsteady moment Imaginary unsteady moment

Fig. 5 Unsteady lift and moment for various pitch amplitudes: NACA 64A010A airfoil section, M 1 = 0.8, ®0 = 0.0 deg, and a = ¡ 0.6; two harmonics
employed in harmonic balance expansion.

With the real and imaginary parts of the aerodynamic moment
taken from Fig. 5, and using the usual pitch equation of motion,

I®

¡
R® C 2³® !® P® C !2

® ®
¢

D q1c2cm (22)

where !2
® D K®=I® , we can convert this equation into the frequency

domain, nondimensionalize,and separate it into real and imaginary
parts. With some rearrangement,these two equationscan be written
as

³
!®

!

´2

D 1 C
³

8
¼

´³
1

¹r 2
®

´»
Re[Ncm. N®; N!/]

N® N!2

¼
(23)

³® D
³

8
¼

´³
1

¹r 2
®

´³
V

N!

´»
Im[Ncm. N®; N!/]

N®

¼
(24)

where a bar over the aerodynamic coef� cient and angle of twist
denotes the amplitude of the � rst harmonic and Re and Im denote
real and imaginary parts.

The imaginarypartof theequationofmotion[Eq. (24)] essentially
determines the neutral stability conditionof the system, and the real
part determines the frequencyof oscillation.Of course, now both of
these results depend on the pitch amplitude N® of motion.

Although structural damping is readily included in the analysis,
as will be seen hereafter, it will be helpful to understandthe essence
of the results by � rst considering the solution for zero structural
damping.

Zero Structural Damping
In this case, Eq. (24) states that a neutrally stable oscillationwill

occurwhen the imaginarypart of theaerodynamicmoment becomes
zero. This will occur at some reduced frequency for a particular an-
gle of pitch oscillation (and other parameters � xed such as Mach
number). Then, from Eq. (23), one can solve for the frequency of
this neutrally stable oscillation.For suf� ciently small motions, this
is the � utter solution; for larger motions, we determine an LCO.

The solution procedure then is to select an amplitude of oscillation,
determine the reduced frequencyat which the imaginary part of the
aerodynamic moment is zero from Fig. 5, and then determine the
frequency of the oscillation from Eq. (23). Note that this is essen-
tially the same computational procedure as for a classical � utter
solution, except that now the reduced frequency, the frequency of
oscillation, and the reduced velocity are all functions of the pitch
amplitude.

Note, however, that just because the imaginary part of the aero-
dynamic moment vanishes(i.e., the aerodynamicdamping becomes
zero), that alone does not ensure that a neutrally stable oscilla-
tion will occur. This is because the frequency determined from
Eq. (23) must be physically possible, that is, the right-hand side
of Eq. (23) must be positive. It is evident that the right-hand side of
Eq. (23) depends only on the reduced frequency (which is known
by the requirement that the imaginary part of the aerodynamicmo-
ment be zero) and a nondimensionalmoment of inertia. Of course,
these reduced frequencies themselves depend on the pitch ampli-
tude. Thus, one can determine when the right-hand side of Eq. (23)
is positive or negative and express the result in terms of pitch am-
plitude and moment of inertia. This relationship is shown in Fig. 6,
and the regions where � utter and LCO are or are not possible are
indicated. The value of moment of inertia that marks the boundary
between no � utter or LCO possible and possible � utter or LCO is
termed the asymptotic value.

Large Pitch Moment of Inertia
Now, if the mass ratio or moment of inertia is much larger than

the asymptoticvalue, a not uncommoncircumstance,then the � utter
or LCO frequencyis simply equal to the structuralpitch natural fre-
quency [see Eq. (23)]. With this approximation, the results of Fig. 7
are obtained for both zero and nonzero structural damping. Note
that the curves bend to the left, which is indicative of an unstable
LCO. That is, these results are to be interpretedas the amplitudeof a
disturbance required to initiate explosive � utter below the classical
� utter velocity for this single-degree-of-freedom pitch oscillation.
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Fig. 6 Asymptotic value of pitch inertia for various pitch amplitudes
marking regions where � utter and LCO are or are not possible: NACA
64A010A airfoil section, M 1 = 0.8, ®0 = 0.0 deg, and a = ¡ 0.6.

Fig. 7 LCO amplitude vs reduced velocity: NACA 64A010A airfoil
section, M1 = 0.8, ®0 = 0.0 deg, and a = ¡ 0.6.

Fig. 8 Normalized structural dampingcorresponding to neutrally sta-
ble LCO for large pitch moment of inertia: NACA 64A010A airfoil
section, M1 = 0.8, ®0 = 0.0 deg, and a = ¡ 0.6.

In Fig. 8, the values of structural damping (normalized by pitch
moment of inertia) that correspond to neutrally stable LCO are
shown. These can be calculated from Eq. (24) as a function of re-
duced velocity for various pitch amplitudes. A cross-plot of these
data is used to construct the plots for nonzero damping values as
shown in Fig. 7.

Effects of Finite Pitch Moment of Inertia
For general values of moment of inertia and structural damping,

the solutionalgorithmusingEqs. (23) and (24), proceedsas follows.

First select a Mach number and pitch axis and, for a range of pitch
amplitudes, determine the � rst harmonic of the aerodynamic mo-
ment (including higher harmonics of the aerodynamic model and
their effect on the fundamental harmonic). Then, for a given pitch
amplitude, choose a reduced frequencyand determine the � utter or
LCO frequency from Eq. (23). This frequency will be proportional
to the pitch structural frequency, of course. With the � utter or LCO
frequencydetermined,and the reduced frequencyselected,one then
knows the � ow velocity corresponding to the chosen pitch ampli-
tude. Finally, from Eq. (24), determine the structuraldamping value
necessary to give a neutrally stable � utter or LCO. From this per-
spective, the � utter condition is simply the neutrally stable motion
that may exist at small angles of twist, and the LCO are the neu-
trally stable oscillations that may exist when the pitch amplitude is
� nite. Of course, the � utter or LCO may become unstable when it
is perturbed (e.g., by perturbations in the amplitude of oscillation),
and this is indeed the case in the example treated here.

Up to this point,we have assumed that the pitch momentof inertia
is well above its asymptotic value. Hence, the � utter frequency is
the same as the structural natural pitch frequency.

Now we consider the more general case and a range of pitch iner-
tias such that the � utter frequencyis no longer preciselyequal to the
structural natural frequency in pitch. Results are shown for nondi-
mensional pitch inertias of 200, 100, 50, 37.5, and 25 in Figs. 9
and 10. Figures 9 and 10 show LCO amplitude as a function of
reduced velocity and reduced frequency, respectively. The asymp-
totic pitch inertia results are also shown for reference.

As expected, for suf� ciently large pitch inertia, say greater than
200, the asymptotic results are good approximations.However, for
pitch inertias less than 100, the results show a more sensitive de-
pendence on pitch moment of inertia. For suf� ciently small pitch
moment of inertia, of course, no � utter or LCO is possible.

Fig. 9 LCO amplitude vs reduced velocity for various pitch inertias:
NACA 64A010A airfoil section, M1 = 0.8, ®0 = 0.0 deg, and a = ¡ 0.6.

Fig. 10 LCO amplitude vs LCO frequency for various pitch inertias:
NACA 64A010A airfoil section, M1 = 0.8, ®0 = 0.0 deg, and a = ¡ 0.6.
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Fig. 11 Pitch inertia vs reduced velocity for � xed pitch amplitudes:
NACA 64A010A airfoil section, M1 = 0.8, ®0 = 0.0 deg, and a = ¡ 0.6.

The relationshipbetweenpitchmomentof inertiaand reducedve-
locity may be even more clearly seen by � xing the pitch amplitude
and then plotting these variables as shown in Fig. 11. Note that in
Fig. 11, as reduced velocity decreases, the pitch moment of inertia
for � utter and LCO to occur tends to in� nity. Thus, for suf� ciently
small reduced velocity, no � utter or LCO will occur. Conversely,
as the pitch moment of inertia decreases, the reduced velocity for
� utter or LCO to occur tends to in� nity. Thus, below some value of
pitch moment of inertia, no � utter or LCO is possible. Of course,
these results are for a � xed pitch amplitude when, in fact, the pitch
amplitude is an outcome of the analysis (not an input). However,
the results are not very sensitive to pitch amplitude, and the con-
clusions regarding asymptotic behavior hold over the full range of
pitch amplitudes considered here.

Multiple Structural Degrees of Freedom
We now consider the case of multiple structural degrees of free-

dom and examine the two-degree-of-freedom (plunge/pitch) typi-
cal airfoil con� guration (Fig. 12). The governing equations for this
aeroelastic system can be written as

mRh C S® R® C Khh D ¡q1c cl (25)

S®
Rh C I® R® C K®® D q1c2cm (26)

As with the single-degree-of-freedom case, we considerharmon-
ically varyingexcitations, that is, h D Nhe j!t and ® D N®e j!t , and con-
vert the governingequations to the frequencydomain. After nondi-
mensionalizing, the system of aeroelastic equations can be written
as

[¡ N!2M C .1=V 2/K ]u D .4=¼¹/ f (27)

where

M D
µ

1 x®

x® r 2
®

¶
; K D

µ
.!h=!®/2 0

0 r 2
®

¶
(28)

u D
»Nh=b

N®

¼
; f D

»
¡Ncl

2 Ncm

¼
(29)

Dynamically Linear Aerodynamics
In the case of a dynamically linear aerodynamic approximation,

the right-hand side aerodynamic force vector f can be written as

f D E. N!/u (30)

where E. N!/ is the 2 £ 2 matrix of aerodynamic transfer functions

E. N!/ D
µ

¡NclNh=b
. N!/ ¡Ncl N® . N!/

2 Ncm Nh=b
. N!/ 2 Ncm N® . N!/

¶
(31)

Equation (27) can then be written as

[¡ N!2M C .1=V 2/K ]u D .4=¼¹/E. N!/u (32)

Fig. 12 Geometry for typical (pitch /plunge) two-degree-of-freedom
airfoil section aeroelastic model.

and for a speci� ed M, K, V , and ¹, Eq. (32) then de� nes an eigen-
value problem with complex valued eigenvalue N!2 and correspond-
ing eigenvector u.

Given an aeroelastic con� guration where a neutral stability con-
dition exists, for some reduced velocity V f , the eigenvalue, that is,
reduced frequency N! f , will be purely real valued, and the aero-
elastic system will have a correspondingstructural eigenvector that
satis� es

£
¡ N!2

f M C
¡
1
¯

V 2
f

¢
K

¤
u f D .4=¼¹/E. N! f /u f (33)

where

u f D
»Nh f =b

N® f

¼
D N® f

»
.Nh= N®b/ f

1

¼
(34)

Nonlinear Aerodynamics
Consideringnow � nite amplitude, yet still harmonicallyvarying,

excitations, the right-hand side of Eq. (27) is then a nonlinear func-
tion of the structuraldisplacementvector [ f D f .u; N!/]. To proceed
with the nonlinear multiple-degree-of-freedom LCO analysis, we
begin by rewriting Eq. (27) as

[¡ N!2M C .1=V 2/K ]v D .4=¼¹ N®/ f . N®; v; N!/ (35)

where

v D
»Nh= N®b

1

¼
(36)

Next, we consider a prescribedunsteady LCO pitch amplitude N®LCO

and a purely real-valued reduced frequency.At the LCO condition,
Eq. (35) can then be written as
£
¡ N!2

LCOM C
¡
1
¯

V 2
LCO

¢
K

¤
vLCO

D .4=¼¹ N®LCO/ f. N®LCO; vLCO; N!LCO/ (37)

In this form, Eq. (37) represents a system of four equations
(considering the real and imaginary parts) for the four unknowns
of N!LCO , VLCO , Re.Nh= N®b/LCO , and Im.Nh= N®b/LCO .

LCO Solution Procedure
De� ning R.L/ as the vector operator representing the residual of

the real and imaginary parts of Eq. (37), one may express R.L/ as
(the LCO subscript here has been dropped)

R.L/ D DQv ¡ .4=¼¹ N®/ Qf D 0 (38)

where D is the 4 £4 matrix

D D ¡ N!2

µ
M 0

0 M

¶
C 1

V 2

µ
K 0

0 K

¶
(39)
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Qv and Qf are

Qv D

8
>><

>>:

Re.Nh= N®b/

1

Im.Nh= N®b/

1

9
>>=

>>;
(40)

Qf D

8
>>><

>>>:

¡Re[ Ncl . N®; N!; Nh=N®b/]

2 Re[Ncm. N®; N!; Nh= N®b/]

¡Im[ Ncl . N®; N!; Nh=N®b/]

2 Im[Ncm. N®; N!; Nh= N®b/]

9
>>>=

>>>;
(41)

and L is the vector of unknown LCO variables

L D

8
>><

>>:

V

N!
Re.Nh= N®b/

Im.Nh= N®b/

9
>>=

>>;
(42)

We have found that a Newton–Raphson technique appears to be
an ef� cient and stable method for quickly solving Eq. (38). That
is, for a speci� ed pitch amplitude N®, one can implement an iterative
processwhereby the .nC1/th update to the LCO solutionis givenby

Ln C 1 D Ln ¡
µ

@R.Ln/

@L

¶¡1

R.Ln/ (43)

We have found that one may use simple forward � nite differencing
to compute the column vectors of @R.Ln/=@L. That is,

µ
@R.L/

@L

¶
D

2

6664

j j j j
@R
@V

@R
@ N!

@R

@Re.Nh= N®b/

@R

@Im.Nh= N®b/

j j j j

3

7775
(44)

a)

b)

Fig. 13 LCO iterative solution procedure: NACA 64A010Aairfoil sec-
tion, M 1 = 0.8, ®0 = 0.0 deg, and a = ¡ 0.6, and Å® = 2:0 deg: a) LCO
reduced velocity convergence history as a function of iteration in LCO
solution technique and b) harmonic balance unsteady solution conver-
gence history as a function of iteration in LCO solution technique.

where, for example,

@R.Ln/

@V
¼ R.Ln; V n C ²/ ¡ R.Ln; V n/

²
(45)

@R.Ln/

@ N!
¼ R.Ln ; N!n C ²/ ¡ R.Ln; N!n/

²
(46)

etc., for a small ².
For each step of the LCO solution procedure, the harmonic bal-

ance � ow solver is implementedusing the current LCO frequency N!
and structural mode shape Nh= N®b for the prescribed LCO pitch am-
plitude N® to provide an update for the LCO unsteady aerodynamic
coef� cients Ncl and Ncm . The techniqueis marcheduntila suitablelevel
of convergenceis achieved. The linear � utter solution by the use of
a time-linearized aerodynamic analysis has been found to provide

a) LCO reduced frequency

b) LCO reduced velocity

c) LCO frequency ratio

Fig. 14 Effect of pitch amplitude on LCO reduced velocity, LCO
reduced frequency, and LCO frequency ratio for two-degree-of-
freedom structural model: NACA 64A010A airfoil section, M1 = 0.8,
®0 = 0.0 deg, and a = ¡ 0.6.
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an excellent starting solution for the iterative process, and typically
only a few iterationsare required to achieve convergence,as will be
shown in the following section.

Sample Two-Degree-of-Freedom Con� guration
To demonstratetheLCO solutiontechnique,we considerthe same

transonicairfoil con� gurationstudied in the precedingsectionswith
the following structural parameters:

x® D 0:25; r 2
® D 0:75; !h=!® D 0:5; ¹ D 75

By the use of a time-linearized � utter analysis, the � utter reduced
frequency,reducedvelocity, and frequencyratio can be shown to be

N! f D 0:2158; V f D 3:001; ! f =!® D 0:6475

and the corresponding� utter mode shape is

v f D
»

.7:151; 1:951/

1

¼
D

»
.0:1248; 0:03405/per deg

1

¼

As can be seen, the structural mode shape at neutral stability is
primarily dominated by plunging motion.

For the following LCO results, pitch amplitudes of N® = 0.1, 0.2,
0.5, 1.0, 1.5, and 2.0 deg are considered.To illustrate the LCO itera-
tive solution procedure described in the preceding section, Fig. 13a
shows the computed LCO reduced velocity after the � rst � ve itera-
tions of the LCO solutionprocessfor the case of the maximum pitch
amplitude N® = 2.0 deg. The zeroth iterationcorrespondsto the linear
� utter solution of V D 3:001. As can be seen, only a few iterations
are required to converge the solution to the LCO reduced velocity
of V D 3:1801.

a) Real part of LCO structural mode shape

b) Imaginary part of LCO structural mode shape

Fig. 15 Effect of pitch amplitude on LCO structural mode shape for
two-degree-of-freedom structural model: NACA 64A010A airfoil sec-
tion, M 1 = 0.8, ®0 = 0.0 deg, and a = ¡ 0.6.

Figure 13b shows the corresponding convergence history of the
harmonic balance solver in determining the unsteady aerodynamic
lift and moment during the iterative process. The interations used
to compute the columns of @R.Ln/=@L are also indicated. In this
instance, we have approximated the gradients using

@R.Ln/

@V
¼ R[Ln ; V n.1 C ²/] ¡ R.Ln ; V n/

²V n
(47)

@R.Ln/

@ N!
¼ R[Ln; N!n.1 C ²/] ¡ R.Ln ; N!n/

² N!n
(48)

etc., with an ² D 0:001 (i.e., a 10th of a percent variation of each
LCO variable), which is valid in this case because each of the LCO
solution variables is nonzero. Iterations for the gradient @R=@V are
unnecessary and not applicable because the harmonic balance � ow
solver is not a function of the reduced velocity V . As can be seen,
as the iterative procedure approaches the converged LCO solution,
fewer and fewer iterations are required of the harmonic balance
solver.

Next, Fig. 14 shows the computed LCO reduced frequency
(Fig. 14a), reducedvelocity(Fig.14b), andfrequencyratio (Fig. 14c)
as a functionof the LCO pitch amplitude.For small amplitudes, the
LCO solution approaches the linear � utter solution as is expected.
Note that the result for the LCO pitch amplitude vs reduced ve-
locity curve (Fig. 14b) bends to the right, which is indicative of a
stable LCO.

Finally, Fig. 15 shows the results for the real, or in-phase
(Fig. 15a), and imaginary, or out-of-phase (Fig. 15b), parts of the
LCO structural mode shape. Again, the solution can be seen to be
rapidly converging, and, for small pitch amplitudes, the LCO solu-
tion approaches the linear � utter solution.

Conclusions
Nonlinear aerodynamic effects on divergence, � utter, and LCO

for a transonic airfoil con� guration are studied using a large-scale
inviscid (Euler) CFD model. A new LCO solution technique is de-
veloped to determine the LCO response,based on unsteadyaerody-
namics provided by a frequency-domainharmonic balance solution
for the nonlinear CFD model. With this technique, both stable and
unstableLCO responseshavebeen found for the same transonicair-
foil. The combinationof the aerodynamicharmonic balancemethod
and the new LCO solution technique is robust and ef� cient and
should prove to be a useful tool for studying LCO behavior.
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